

Assumptions • Known geometry • Distant illumination • Homogenous isotropic materials • Convex curved surfaces: no shadows, interreflection Later, practical algorithms: relax some assumptions

Contributions

- 1. Formalize reflection as convolution
- 2. Signal-processing framework
- 3. Analyze well-posedness of inverse problems
- 4. Practical algorithms

Spherical Harmonic Analysis

2D:
$$B(\boldsymbol{a}, \boldsymbol{q}_o) = \int_{-p/2}^{p/2} L(\boldsymbol{a} + \boldsymbol{q}_i) \quad \boldsymbol{r}(\boldsymbol{q}_i, \boldsymbol{q}_o) \quad d\boldsymbol{q}_i$$

$$B_{l,p} = 2\boldsymbol{p}L_l\boldsymbol{r}_{l,p}$$
3D:
$$E(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{q}_o, \boldsymbol{j}_o) = \int_0^{\frac{p}{2}} \int_0^{2p} L(R_{\boldsymbol{a}, \boldsymbol{b}}[\boldsymbol{q}_i, \boldsymbol{j}_i]) \boldsymbol{r}(\boldsymbol{q}_i, \boldsymbol{j}_i, \boldsymbol{q}_o, \boldsymbol{j}_o) d\boldsymbol{q}_i d\boldsymbol{j}_i$$

$$B_{lm,pq} = \Lambda_l L_{lm} \boldsymbol{r}_{lq,pq}$$

Insights: Signal Processing

Signal processing framework for reflection

- Light is the signal
- · BRDF is the filter
- Reflection on a curved surface is convolution

Insights: Signal Processing

Signal processing framework for reflection

- Light is the signal
- · BRDF is the filter
- Reflection on a curved surface is convolution

Filter is Delta function: Output = Signal

Mirror BRDF: Image = Lighting

[Miller and Hoffman 84]

Image courtesy Paul Debevec

Insights: Signal Processing

Signal processing framework for reflection

- Light is the signal
- · BRDF is the filter
- Reflection on a curved surface is convolution

Signal is Delta function : Output = Filter

Point Light Source : Images = BRDF

[Marschner et al. 00]

Inverse Lighting

Given: B,? find L

$$B = L \otimes \mathbf{r}$$

$$B_{lm,pq} = \Lambda_l L_{lm} \mathbf{r}_{lq,pq}$$

$$L_{lm} = rac{1}{\Lambda_l} rac{B_{lm,pq}}{m{r}_{lq,pq}}$$

Well-posed unless denominator vanishes

- BRDF should contain high frequencies : Sharp highlights
- · Diffuse reflectors low pass filters: Inverse lighting ill-posed

Inverse BRDF

Given: B,L find?

$$\mathbf{r}_{lq,pq} = \frac{1}{\Lambda} \frac{B_{lm,pq}}{I}$$

Well-posed unless L_{lm} vanishes

- Lighting should have sharp features (point sources, edges)
- BRDF estimation ill-conditioned for soft lighting

Directional

Area source Same BRDF

Factoring the Light Field

Given: B find L and?

$$B = L \otimes \mathbf{r}$$

$$\downarrow \qquad \downarrow \qquad \text{More knowns (4D)}$$

$$4D \quad 2D \quad 3D \qquad \text{than unknowns (2D/3D)}$$

Light Field can be factored

- Up to global scale factor
- Assumes reciprocity of BRDF
- Can be ill-conditioned
- · Analytic formula in paper

Practical Issues

- Incomplete sparse data (few photographs)
 Difficult to compute frequency spectra
- · Concavities: Self Shadowing and Interreflection
- Spatially varying BRDFs: Textures

Practical Issues

- Incomplete sparse data (few photographs)
 Difficult to compute frequency spectra
- Concavities: Self Shadowing and Interreflection
- Spatially varying BRDFs: Textures

Issues can be addressed; can derive practical algorithms
Dual spatial (angular) and frequency-space representation
Simple extensions for shadowing, textures

Algorithm Validation Photograph "True" values K_d 0.91 K_s 0.09 µ 1.85 σ 0.13

Summary

- Reflection as convolution
- Signal-processing framework
- Formal study of inverse rendering
- Practical algorithms

Implications and Future Work

- Frequency space analysis of reflection
- Well-posedness of inverse problems Perception, human vision

 - Forward rendering [Friday]
- Complex uncontrolled illumination

Acknowledgements • Marc Levoy • Szymon Rusinkiewicz • Steve Marschner • John Parissenti, Jean Gleason • Scanned cat sculpture is "Serenity" by Sue Dawes • Hodgson-Reed Stanford Graduate Fellowship • NSF ITR grant #0085864: "Interacting with the Visual World" Paper Website:

The End

The End

http://graphics.stanford.edu/papers/invrend

Other Papers

- Linked to from website for this paper
 http://graphics.stanford.edu/papers/invrend/
- Theory

 - Flatland or 2D using Fourier analysis [SPIE 01]
 Lambertian: radiance from irradiance [JOSA 01]
- Application to other areas
 Forward Rendering (Friday) [SIGGRAPH 01]
 - Lighting variability object recognition [CVPR 01]